Elementary band representations
Crystalline.jl provides an interface to access the elementary band representations (EBRs) hosted by the Bilbao Crystallographic Server's BANDREP program via bandreps
. Please cite the original research (listed in the associated docstrings).
As an example, we can obtain the all inequivalent EBRs in space group 219 (F-43c) with:
using Crystalline
brs = bandreps(219, 3) # space group 219 (dimension 3)
BandRepSet (⋕219): 10 BandReps, sampling 14 LGIrreps (spin-1 w/ TR)
──────┬────────────────────────────────────────────────
│ 8a 8a 8a 8b 8b 8b 24c 24c 24d 24d
│ A ¹E²E T A ¹E²E T A B A B
──────┼────────────────────────────────────────────────
Γ₁ │ 1 · · 1 · · 1 · 1 ·
Γ₂ │ 1 · · 1 · · · 1 · 1
Γ₃ │ · 2 · · 2 · 1 1 1 1
Γ₄ │ · · 1 · · 1 · 1 · 1
Γ₅ │ · · 1 · · 1 1 · 1 ·
X₁ │ 1 2 · · · 1 · 1 2 1
X₂ │ 1 2 · · · 1 1 · 1 2
X₃ │ · · 1 1 2 · 2 1 · 1
X₄ │ · · 1 1 2 · 1 2 1 ·
X₅ │ · · 2 · · 2 1 1 1 1
L₁L₂ │ 1 · 1 1 · 1 1 1 1 1
L₃L₃ │ · 1 1 · 1 1 1 1 1 1
W₁W₂ │ 1 2 1 · · 2 1 1 2 2
W₃W₄ │ · · 2 1 2 1 2 2 1 1
──────┼────────────────────────────────────────────────
μ │ 2 4 6 2 4 6 6 6 6 6
──────┴────────────────────────────────────────────────
KVecs: Γ, X, L, W
which returns a BandRepSet
, which itself is an AbstractVector
of BandRep
s. This allows us to index into brs
easily:
brs[1] # obtain the EBR induced by Wyckoff position 8a with irrep A
2-band BandRep (A↑G at 8a):
[Γ₁+Γ₂, X₁+X₂, L₁L₂, W₁W₂]
By default, bandreps
returns the spinless EBRs with time-reversal symmetry. This behavior can be controlled with the keyword arguments spinful
(default, false
) and timereversal
(default, true
). By default, only minimal paths are included in the sampling of k-vectors; additional paths can be obtained by setting the keyword argument allpaths = true
(default, false
).
The distinct topological classes identifiable from symmetry can can be calculated via classification
, which uses the Smith normal form's principle factors:
classification(brs)
"Z₁"
Which demonstrates that the symmetry indicator group of spinless particles with time-reversal symmetry in space group 219 is trivial.
Topology and associated bases
The SymmetryBases.jl
package provides tools to analyze topology of symmetry vectors and compute associated Hilbert bases.
API
Crystalline.bandreps
— Functionbandreps(sgnum::Integer, D::Integer=3;
allpaths::Bool=false, spinful::Bool=false, timereversal::Bool=true)
Returns the elementary band representations (EBRs) as a BandRepSet
for space group sgnum
and dimension D
.
Keyword arguments
allpaths
: include a minimal sufficient set (false
, default) or all (true
) k-vectors.spinful
: single- (false
, default) or double-valued (true
) irreps, as appropriate for spinless and spinful particles, respectively. Only available forD=3
.timereversal
: assume presence (true
, default) or absence (false
) of time-reversal symmetry.
References
3D EBRs are obtained from the Bilbao Crystallographic Server's BANDREP program; please reference the original research papers noted there if used in published work.
Crystalline.classification
— Functionclassification(brs_or_F::Union{BandRepSet, Smith}) --> String
Return the symmetry indicator group $X^{\text{BS}}$ of an EBR basis F_or_brs
, provided as a BandRepSet
or Smith
decomposition.
Technically, the calculation answers the question "what direct product of $\mathbb{Z}_n$ groups is the the quotient group $X^{\text{BS}} = \{\text{BS}\}/\{\text{AI}\}$ isomorphic to?" (see Po, Watanabe, & Vishwanath, Nature Commun. 8, 50 (2017) for more information).
Crystalline.nontrivial_factors
— Functionnontrivial_factors(F::Smith) -> Any
Return the nontrivial (i.e., ≠ {0,1}) elementary factors of an EBR basis, provided as a BandRepSet
or Smith
decomposition.
Crystalline.basisdim
— Functionbasisdim(brs::BandRepSet) --> Int
Return the dimension of the (linearly independent parts) of a band representation set. This is $d^{\text{bs}} = d^{\text{ai}}$ in the notation of Po, Watanabe, & Vishwanath, Nature Commun. 8, 50 (2017), or equivalently, the rank of stack(brs)
over the ring of integers. This is the number of linearly independent basis vectors that span the expansions of a band structure viewed as symmetry data.